567 lines
26 KiB
JavaScript
567 lines
26 KiB
JavaScript
import * as readline from "readline";
|
|
import process from "process";
|
|
import path from "path";
|
|
import chalk from "chalk";
|
|
import fs from "fs-extra";
|
|
import prettyMilliseconds from "pretty-ms";
|
|
import { getLlama } from "../../bindings/getLlama.js";
|
|
import { LlamaLogLevel, LlamaLogLevelGreaterThan, llamaNumaOptions, nodeLlamaCppGpuOptions, parseNodeLlamaCppGpuOption, parseNumaOption } from "../../bindings/types.js";
|
|
import { LlamaCompletion } from "../../evaluator/LlamaCompletion.js";
|
|
import withOra from "../../utils/withOra.js";
|
|
import { TokenMeter } from "../../evaluator/TokenMeter.js";
|
|
import { printInfoLine } from "../utils/printInfoLine.js";
|
|
import { printCommonInfoLines } from "../utils/printCommonInfoLines.js";
|
|
import { resolveCommandGgufPath } from "../utils/resolveCommandGgufPath.js";
|
|
import { withProgressLog } from "../../utils/withProgressLog.js";
|
|
import { resolveHeaderFlag } from "../utils/resolveHeaderFlag.js";
|
|
import { withCliCommandDescriptionDocsUrl } from "../utils/withCliCommandDescriptionDocsUrl.js";
|
|
import { documentationPageUrls } from "../../config.js";
|
|
import { ConsoleInteraction, ConsoleInteractionKey } from "../utils/ConsoleInteraction.js";
|
|
import { DraftSequenceTokenPredictor } from "../../evaluator/LlamaContext/tokenPredictors/DraftSequenceTokenPredictor.js";
|
|
export const CompleteCommand = {
|
|
command: "complete [modelPath]",
|
|
describe: withCliCommandDescriptionDocsUrl("Generate a completion for a given text", documentationPageUrls.CLI.Complete),
|
|
builder(yargs) {
|
|
return yargs
|
|
.option("modelPath", {
|
|
alias: ["m", "model", "path", "url", "uri"],
|
|
type: "string",
|
|
description: "Model file to use for the completion. Can be a path to a local file or a URI of a model file to download. Leave empty to choose from a list of recommended models"
|
|
})
|
|
.option("header", {
|
|
alias: ["H"],
|
|
type: "string",
|
|
array: true,
|
|
description: "Headers to use when downloading a model from a URL, in the format `key: value`. You can pass this option multiple times to add multiple headers."
|
|
})
|
|
.option("gpu", {
|
|
type: "string",
|
|
// yargs types don't support passing `false` as a choice, although it is supported by yargs
|
|
choices: nodeLlamaCppGpuOptions,
|
|
coerce: (value) => {
|
|
if (value == null || value == "")
|
|
return undefined;
|
|
return parseNodeLlamaCppGpuOption(value);
|
|
},
|
|
defaultDescription: "Uses the latest local build, and fallbacks to \"auto\"",
|
|
description: "Compute layer implementation type to use for llama.cpp. If omitted, uses the latest local build, and fallbacks to \"auto\""
|
|
})
|
|
.option("systemInfo", {
|
|
alias: "i",
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Print llama.cpp system info"
|
|
})
|
|
.option("text", {
|
|
type: "string",
|
|
description: "First text to automatically start generating completion for"
|
|
})
|
|
.option("textFile", {
|
|
type: "string",
|
|
description: "Path to a file to load text from and use as the first text to automatically start generating completion for"
|
|
})
|
|
.option("contextSize", {
|
|
alias: "c",
|
|
type: "number",
|
|
description: "Context size to use for the model context",
|
|
default: -1,
|
|
defaultDescription: "Automatically determined based on the available VRAM"
|
|
})
|
|
.option("batchSize", {
|
|
alias: "b",
|
|
type: "number",
|
|
description: "Batch size to use for the model context"
|
|
})
|
|
.option("flashAttention", {
|
|
alias: "fa",
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Enable flash attention"
|
|
})
|
|
.option("swaFullCache", {
|
|
alias: "noSwa",
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Disable SWA (Sliding Window Attention) on supported models"
|
|
})
|
|
.option("threads", {
|
|
type: "number",
|
|
defaultDescription: "Number of cores that are useful for math on the current machine",
|
|
description: "Number of threads to use for the evaluation of tokens"
|
|
})
|
|
.option("temperature", {
|
|
alias: "t",
|
|
type: "number",
|
|
default: 0,
|
|
description: "Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The suggested temperature is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. Set to `0` to disable."
|
|
})
|
|
.option("minP", {
|
|
alias: "mp",
|
|
type: "number",
|
|
default: 0,
|
|
description: "From the next token candidates, discard the percentage of tokens with the lowest probability. For example, if set to `0.05`, 5% of the lowest probability tokens will be discarded. This is useful for generating more high-quality results when using a high temperature. Set to a value between `0` and `1` to enable. Only relevant when `temperature` is set to a value greater than `0`."
|
|
})
|
|
.option("topK", {
|
|
alias: "k",
|
|
type: "number",
|
|
default: 40,
|
|
description: "Limits the model to consider only the K most likely next tokens for sampling at each step of sequence generation. An integer number between `1` and the size of the vocabulary. Set to `0` to disable (which uses the full vocabulary). Only relevant when `temperature` is set to a value greater than 0."
|
|
})
|
|
.option("topP", {
|
|
alias: "p",
|
|
type: "number",
|
|
default: 0.95,
|
|
description: "Dynamically selects the smallest set of tokens whose cumulative probability exceeds the threshold P, and samples the next token only from this set. A float number between `0` and `1`. Set to `1` to disable. Only relevant when `temperature` is set to a value greater than `0`."
|
|
})
|
|
.option("seed", {
|
|
type: "number",
|
|
description: "Used to control the randomness of the generated text. Only relevant when using `temperature`.",
|
|
defaultDescription: "The current epoch time"
|
|
})
|
|
.option("gpuLayers", {
|
|
alias: "gl",
|
|
type: "number",
|
|
description: "number of layers to store in VRAM",
|
|
default: -1,
|
|
defaultDescription: "Automatically determined based on the available VRAM"
|
|
})
|
|
.option("repeatPenalty", {
|
|
alias: "rp",
|
|
type: "number",
|
|
default: 1.1,
|
|
description: "Prevent the model from repeating the same token too much. Set to `1` to disable."
|
|
})
|
|
.option("lastTokensRepeatPenalty", {
|
|
alias: "rpn",
|
|
type: "number",
|
|
default: 64,
|
|
description: "Number of recent tokens generated by the model to apply penalties to repetition of"
|
|
})
|
|
.option("penalizeRepeatingNewLine", {
|
|
alias: "rpnl",
|
|
type: "boolean",
|
|
default: true,
|
|
description: "Penalize new line tokens. set `--no-penalizeRepeatingNewLine` or `--no-rpnl` to disable"
|
|
})
|
|
.option("repeatFrequencyPenalty", {
|
|
alias: "rfp",
|
|
type: "number",
|
|
description: "For n time a token is in the `punishTokens` array, lower its probability by `n * repeatFrequencyPenalty`. Set to a value between `0` and `1` to enable."
|
|
})
|
|
.option("repeatPresencePenalty", {
|
|
alias: "rpp",
|
|
type: "number",
|
|
description: "Lower the probability of all the tokens in the `punishTokens` array by `repeatPresencePenalty`. Set to a value between `0` and `1` to enable."
|
|
})
|
|
.option("maxTokens", {
|
|
alias: "mt",
|
|
type: "number",
|
|
default: 0,
|
|
description: "Maximum number of tokens to generate in responses. Set to `0` to disable. Set to `-1` to set to the context size"
|
|
})
|
|
.option("tokenPredictionDraftModel", {
|
|
alias: ["dm", "draftModel"],
|
|
type: "string",
|
|
description: "Model file to use for draft sequence token prediction (speculative decoding). Can be a path to a local file or a URI of a model file to download"
|
|
})
|
|
.option("tokenPredictionModelContextSize", {
|
|
alias: ["dc", "draftContextSize", "draftContext"],
|
|
type: "number",
|
|
description: "Max context size to use for the draft sequence token prediction model context",
|
|
default: 4096
|
|
})
|
|
.option("debug", {
|
|
alias: "d",
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Print llama.cpp info and debug logs"
|
|
})
|
|
.option("numa", {
|
|
type: "string",
|
|
// yargs types don't support passing `false` as a choice, although it is supported by yargs
|
|
choices: llamaNumaOptions,
|
|
coerce: (value) => {
|
|
if (value == null || value == "")
|
|
return false;
|
|
return parseNumaOption(value);
|
|
},
|
|
defaultDescription: "false",
|
|
description: "NUMA allocation policy. See the `numa` option on the `getLlama` method for more information"
|
|
})
|
|
.option("meter", {
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Log how many tokens were used as input and output for each response"
|
|
})
|
|
.option("timing", {
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Print how how long it took to generate each response"
|
|
})
|
|
.option("noMmap", {
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Disable mmap (memory-mapped file) usage"
|
|
})
|
|
.option("noDirectIo", {
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Disable Direct I/O usage when available"
|
|
})
|
|
.option("printTimings", {
|
|
alias: "pt",
|
|
type: "boolean",
|
|
default: false,
|
|
description: "Print llama.cpp's internal timings after each response"
|
|
});
|
|
},
|
|
async handler({ modelPath, header, gpu, systemInfo, text, textFile, contextSize, batchSize, flashAttention, swaFullCache, threads, temperature, minP, topK, topP, seed, gpuLayers, repeatPenalty, lastTokensRepeatPenalty, penalizeRepeatingNewLine, repeatFrequencyPenalty, repeatPresencePenalty, maxTokens, tokenPredictionDraftModel, tokenPredictionModelContextSize, debug, numa, meter, timing, noMmap, noDirectIo, printTimings }) {
|
|
try {
|
|
await RunCompletion({
|
|
modelPath, header, gpu, systemInfo, text, textFile, contextSize, batchSize, flashAttention, swaFullCache,
|
|
threads, temperature, minP, topK, topP, seed, gpuLayers, lastTokensRepeatPenalty,
|
|
repeatPenalty, penalizeRepeatingNewLine, repeatFrequencyPenalty, repeatPresencePenalty, maxTokens,
|
|
tokenPredictionDraftModel, tokenPredictionModelContextSize, debug, numa, meter, timing, noMmap, noDirectIo, printTimings
|
|
});
|
|
}
|
|
catch (err) {
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
console.error(err);
|
|
process.exit(1);
|
|
}
|
|
}
|
|
};
|
|
async function RunCompletion({ modelPath: modelArg, header: headerArg, gpu, systemInfo, text, textFile, contextSize, batchSize, flashAttention, swaFullCache, threads, temperature, minP, topK, topP, seed, gpuLayers, lastTokensRepeatPenalty, repeatPenalty, penalizeRepeatingNewLine, repeatFrequencyPenalty, repeatPresencePenalty, tokenPredictionDraftModel, tokenPredictionModelContextSize, maxTokens, debug, numa, meter, timing, noMmap, noDirectIo, printTimings }) {
|
|
if (contextSize === -1)
|
|
contextSize = undefined;
|
|
if (gpuLayers === -1)
|
|
gpuLayers = undefined;
|
|
const headers = resolveHeaderFlag(headerArg);
|
|
if (debug)
|
|
console.info(`${chalk.yellow("Log level:")} debug`);
|
|
const llamaLogLevel = debug
|
|
? LlamaLogLevel.debug
|
|
: LlamaLogLevel.warn;
|
|
const llama = gpu == null
|
|
? await getLlama("lastBuild", {
|
|
logLevel: llamaLogLevel,
|
|
numa
|
|
})
|
|
: await getLlama({
|
|
gpu,
|
|
logLevel: llamaLogLevel,
|
|
numa
|
|
});
|
|
const logBatchSize = batchSize != null;
|
|
const useMmap = !noMmap && llama.supportsMmap;
|
|
const useDirectIo = !noDirectIo;
|
|
const resolvedModelPath = await resolveCommandGgufPath(modelArg, llama, headers, {
|
|
flashAttention,
|
|
swaFullCache,
|
|
useMmap
|
|
});
|
|
const resolvedDraftModelPath = (tokenPredictionDraftModel != null && tokenPredictionDraftModel !== "")
|
|
? await resolveCommandGgufPath(tokenPredictionDraftModel, llama, headers, {
|
|
flashAttention,
|
|
swaFullCache,
|
|
useMmap,
|
|
consoleTitle: "Draft model file"
|
|
})
|
|
: undefined;
|
|
if (systemInfo)
|
|
console.log(llama.systemInfo);
|
|
if (textFile != null && textFile !== "") {
|
|
if (text != null && text !== "")
|
|
console.warn(chalk.yellow("Both `text` and `textFile` were specified. `textFile` will be used."));
|
|
text = await fs.readFile(path.resolve(process.cwd(), textFile), "utf8");
|
|
}
|
|
if (batchSize != null && contextSize != null && batchSize > contextSize) {
|
|
console.warn(chalk.yellow("Batch size is greater than the context size. Batch size will be set to the context size."));
|
|
batchSize = contextSize;
|
|
}
|
|
let initialText = text ?? null;
|
|
const model = await withProgressLog({
|
|
loadingText: chalk.blue.bold("Loading model"),
|
|
successText: chalk.blue("Model loaded"),
|
|
failText: chalk.blue("Failed to load model"),
|
|
liveUpdates: !debug,
|
|
noProgress: debug,
|
|
liveCtrlCSendsAbortSignal: true
|
|
}, async (progressUpdater) => {
|
|
try {
|
|
return await llama.loadModel({
|
|
modelPath: resolvedModelPath,
|
|
gpuLayers: gpuLayers != null
|
|
? gpuLayers
|
|
: contextSize != null
|
|
? { fitContext: { contextSize } }
|
|
: undefined,
|
|
defaultContextFlashAttention: flashAttention,
|
|
defaultContextSwaFullCache: swaFullCache,
|
|
useMmap,
|
|
useDirectIo,
|
|
ignoreMemorySafetyChecks: gpuLayers != null,
|
|
onLoadProgress(loadProgress) {
|
|
progressUpdater.setProgress(loadProgress);
|
|
},
|
|
loadSignal: progressUpdater.abortSignal
|
|
});
|
|
}
|
|
catch (err) {
|
|
if (err === progressUpdater.abortSignal?.reason)
|
|
process.exit(0);
|
|
throw err;
|
|
}
|
|
finally {
|
|
if (llama.logLevel === LlamaLogLevel.debug) {
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
console.info();
|
|
}
|
|
}
|
|
});
|
|
const draftModel = resolvedDraftModelPath == null
|
|
? undefined
|
|
: await withProgressLog({
|
|
loadingText: chalk.blue.bold("Loading draft model"),
|
|
successText: chalk.blue("Draft model loaded"),
|
|
failText: chalk.blue("Failed to load draft model"),
|
|
liveUpdates: !debug,
|
|
noProgress: debug,
|
|
liveCtrlCSendsAbortSignal: true
|
|
}, async (progressUpdater) => {
|
|
try {
|
|
return await llama.loadModel({
|
|
modelPath: resolvedDraftModelPath,
|
|
defaultContextFlashAttention: flashAttention,
|
|
defaultContextSwaFullCache: swaFullCache,
|
|
useMmap,
|
|
useDirectIo,
|
|
onLoadProgress(loadProgress) {
|
|
progressUpdater.setProgress(loadProgress);
|
|
},
|
|
loadSignal: progressUpdater.abortSignal
|
|
});
|
|
}
|
|
catch (err) {
|
|
if (err === progressUpdater.abortSignal?.reason)
|
|
process.exit(0);
|
|
throw err;
|
|
}
|
|
finally {
|
|
if (llama.logLevel === LlamaLogLevel.debug) {
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
console.info();
|
|
}
|
|
}
|
|
});
|
|
const draftContext = draftModel == null
|
|
? undefined
|
|
: await withOra({
|
|
loading: chalk.blue("Creating draft context"),
|
|
success: chalk.blue("Draft context created"),
|
|
fail: chalk.blue("Failed to create draft context"),
|
|
useStatusLogs: debug
|
|
}, async () => {
|
|
try {
|
|
return await draftModel.createContext({
|
|
contextSize: { max: tokenPredictionModelContextSize }
|
|
});
|
|
}
|
|
finally {
|
|
if (llama.logLevel === LlamaLogLevel.debug) {
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
console.info();
|
|
}
|
|
}
|
|
});
|
|
const context = await withOra({
|
|
loading: chalk.blue("Creating context"),
|
|
success: chalk.blue("Context created"),
|
|
fail: chalk.blue("Failed to create context"),
|
|
useStatusLogs: debug
|
|
}, async () => {
|
|
try {
|
|
return await model.createContext({
|
|
contextSize: contextSize != null ? contextSize : undefined,
|
|
batchSize: batchSize != null ? batchSize : undefined,
|
|
threads: threads === null ? undefined : threads,
|
|
ignoreMemorySafetyChecks: gpuLayers != null || contextSize != null,
|
|
performanceTracking: printTimings
|
|
});
|
|
}
|
|
finally {
|
|
if (llama.logLevel === LlamaLogLevel.debug) {
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
console.info();
|
|
}
|
|
}
|
|
});
|
|
const draftContextSequence = draftContext?.getSequence();
|
|
const contextSequence = draftContextSequence != null
|
|
? context.getSequence({
|
|
tokenPredictor: new DraftSequenceTokenPredictor(draftContextSequence)
|
|
})
|
|
: context.getSequence();
|
|
const completion = new LlamaCompletion({
|
|
contextSequence
|
|
});
|
|
let lastDraftTokenMeterState = draftContextSequence?.tokenMeter.getState();
|
|
let lastTokenMeterState = contextSequence.tokenMeter.getState();
|
|
let lastTokenPredictionsStats = contextSequence.tokenPredictions;
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
const padTitle = await printCommonInfoLines({
|
|
context,
|
|
draftContext,
|
|
useMmap,
|
|
useDirectIo,
|
|
minTitleLength: "Complete".length + 1,
|
|
logBatchSize,
|
|
tokenMeterEnabled: meter
|
|
});
|
|
printInfoLine({
|
|
title: "Complete",
|
|
padTitle: padTitle,
|
|
info: [{
|
|
title: "Repeat penalty",
|
|
value: `${repeatPenalty} (apply to last ${lastTokensRepeatPenalty} tokens)`
|
|
}, {
|
|
show: repeatFrequencyPenalty != null,
|
|
title: "Repeat frequency penalty",
|
|
value: String(repeatFrequencyPenalty)
|
|
}, {
|
|
show: repeatPresencePenalty != null,
|
|
title: "Repeat presence penalty",
|
|
value: String(repeatPresencePenalty)
|
|
}, {
|
|
show: !penalizeRepeatingNewLine,
|
|
title: "Penalize repeating new line",
|
|
value: "disabled"
|
|
}, {
|
|
show: timing,
|
|
title: "Response timing",
|
|
value: "enabled"
|
|
}]
|
|
});
|
|
// this is for ora to not interfere with readline
|
|
await new Promise((resolve) => setTimeout(resolve, 1));
|
|
const replHistory = [];
|
|
async function getPrompt() {
|
|
const rl = readline.createInterface({
|
|
input: process.stdin,
|
|
output: process.stdout,
|
|
history: replHistory.slice()
|
|
});
|
|
const res = await new Promise((accept) => rl.question(chalk.yellow("> "), accept));
|
|
rl.close();
|
|
return res;
|
|
}
|
|
while (true) {
|
|
const input = initialText != null
|
|
? initialText
|
|
: await getPrompt();
|
|
if (initialText != null) {
|
|
console.log(chalk.green("> ") + initialText);
|
|
initialText = null;
|
|
}
|
|
else
|
|
await replHistory.push(input);
|
|
if (input === ".exit")
|
|
break;
|
|
process.stdout.write(chalk.yellow("Completion: "));
|
|
const [startColor, endColor] = chalk.blue("MIDDLE").split("MIDDLE");
|
|
const abortController = new AbortController();
|
|
const consoleInteraction = new ConsoleInteraction();
|
|
consoleInteraction.onKey(ConsoleInteractionKey.ctrlC, async () => {
|
|
abortController.abort();
|
|
consoleInteraction.stop();
|
|
});
|
|
const timeBeforePrompt = Date.now();
|
|
try {
|
|
process.stdout.write(startColor);
|
|
consoleInteraction.start();
|
|
await completion.generateCompletion(input, {
|
|
temperature,
|
|
minP,
|
|
topK,
|
|
topP,
|
|
seed: seed ?? undefined,
|
|
signal: abortController.signal,
|
|
repeatPenalty: {
|
|
penalty: repeatPenalty,
|
|
frequencyPenalty: repeatFrequencyPenalty != null ? repeatFrequencyPenalty : undefined,
|
|
presencePenalty: repeatPresencePenalty != null ? repeatPresencePenalty : undefined,
|
|
penalizeNewLine: penalizeRepeatingNewLine,
|
|
lastTokens: lastTokensRepeatPenalty
|
|
},
|
|
maxTokens: maxTokens === -1
|
|
? context.contextSize
|
|
: maxTokens <= 0
|
|
? undefined
|
|
: maxTokens,
|
|
onTextChunk(chunk) {
|
|
process.stdout.write(chunk);
|
|
}
|
|
});
|
|
}
|
|
catch (err) {
|
|
if (!(abortController.signal.aborted && err === abortController.signal.reason))
|
|
throw err;
|
|
}
|
|
finally {
|
|
consoleInteraction.stop();
|
|
if (abortController.signal.aborted)
|
|
process.stdout.write(endColor + chalk.yellow("[generation aborted by user]"));
|
|
else
|
|
process.stdout.write(endColor);
|
|
console.log();
|
|
}
|
|
const timeAfterPrompt = Date.now();
|
|
if (printTimings) {
|
|
if (LlamaLogLevelGreaterThan(llama.logLevel, LlamaLogLevel.info))
|
|
llama.logLevel = LlamaLogLevel.info;
|
|
await context.printTimings();
|
|
await new Promise((accept) => setTimeout(accept, 0)); // wait for logs to finish printing
|
|
llama.logLevel = llamaLogLevel;
|
|
}
|
|
if (timing)
|
|
console.info(chalk.dim("Response duration: ") +
|
|
prettyMilliseconds(timeAfterPrompt - timeBeforePrompt, {
|
|
keepDecimalsOnWholeSeconds: true,
|
|
secondsDecimalDigits: 2,
|
|
separateMilliseconds: true,
|
|
compact: false
|
|
}));
|
|
if (meter) {
|
|
const newTokenMeterState = contextSequence.tokenMeter.getState();
|
|
const tokenMeterDiff = TokenMeter.diff(newTokenMeterState, lastTokenMeterState);
|
|
lastTokenMeterState = newTokenMeterState;
|
|
const showDraftTokenMeterDiff = lastDraftTokenMeterState != null && draftContextSequence != null;
|
|
const tokenPredictionsStats = contextSequence.tokenPredictions;
|
|
const validatedTokenPredictions = tokenPredictionsStats.validated - lastTokenPredictionsStats.validated;
|
|
const refutedTokenPredictions = tokenPredictionsStats.refuted - lastTokenPredictionsStats.refuted;
|
|
const usedTokenPredictions = tokenPredictionsStats.used - lastTokenPredictionsStats.used;
|
|
const unusedTokenPredictions = tokenPredictionsStats.unused - lastTokenPredictionsStats.unused;
|
|
lastTokenPredictionsStats = tokenPredictionsStats;
|
|
console.info([
|
|
showDraftTokenMeterDiff && (chalk.yellow("Main".padEnd("Drafter".length))),
|
|
chalk.dim("Input tokens:") + " " + String(tokenMeterDiff.usedInputTokens).padEnd(5, " "),
|
|
chalk.dim("Output tokens:") + " " + String(tokenMeterDiff.usedOutputTokens).padEnd(5, " "),
|
|
showDraftTokenMeterDiff && (chalk.dim("Validated predictions:") + " " + String(validatedTokenPredictions).padEnd(5, " ")),
|
|
showDraftTokenMeterDiff && (chalk.dim("Refuted predictions:") + " " + String(refutedTokenPredictions).padEnd(5, " ")),
|
|
showDraftTokenMeterDiff && (chalk.dim("Used predictions:") + " " + String(usedTokenPredictions).padEnd(5, " ")),
|
|
showDraftTokenMeterDiff && (chalk.dim("Unused predictions:") + " " + String(unusedTokenPredictions).padEnd(5, " "))
|
|
].filter(Boolean).join(" "));
|
|
if (lastDraftTokenMeterState != null && draftContextSequence != null) {
|
|
const newDraftTokenMeterState = draftContextSequence.tokenMeter.getState();
|
|
const draftTokenMeterDiff = TokenMeter.diff(newDraftTokenMeterState, lastDraftTokenMeterState);
|
|
lastDraftTokenMeterState = newDraftTokenMeterState;
|
|
console.info([
|
|
chalk.yellow("Drafter"),
|
|
chalk.dim("Input tokens:") + " " + String(draftTokenMeterDiff.usedInputTokens).padEnd(5, " "),
|
|
chalk.dim("Output tokens:") + " " + String(draftTokenMeterDiff.usedOutputTokens).padEnd(5, " ")
|
|
].join(" "));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//# sourceMappingURL=CompleteCommand.js.map
|